Общая теория статистики

Задание 1.

С целью выявления зависимости между экономическими показателями провести группировку 50 ремонтных предприятий железнодорожного транспорта (см. Таб. 1) с равными интервалами, выделив 5 групп.

Исходные данные:

Таб. 1

Группировоч-ный признак

Результатив-ный признак

Группировоч-ный признак

Результатив-ный признак

число вагонов находящихся в ремонте, шт/сут

чистая прибыль предприятия, млн.руб.

число вагонов находящихся в ремонте, шт/сут

чистая прибыль предприятия, млн.руб.

51

8

130

76

10

134

52

11

148

77

6

136

53

36

155

78

7

133

54

2

124

79

1

127

55

2

125

80

7

128

56

29

135

81

1

118

57

14

126

82

5

124

58

14

136

83

15

137

59

8

124

84

6

110

60

8

128

85

17

139

61

5

110

86

8

148

62

8

150

87

1

123

63

1

110

88

10

138

64

6

122

89

21

189

65

18

140

90

11

139

66

4

110

91

2

122

67

9

139

92

2

124

68

2

121

93

1

113

69

1

111

94

8

117

70

5

132

95

6

126

71

1

129

96

3

130

72

7

139

97

3

112

73

9

148

98

2

133

74

25

144

99

25

195

75

16

146

100

5

176

Решение задачи:

Группировка производится по группировочному признаку. Определим величину (шаг) интервала группировки по формуле:

k = 5 , число групп в группировке (из условия)

Xmax, Xmin – максимальное и минимальное значение группировочного

признака

l – величина (шаг) интервала группировки.

Определим нижнюю и верхнюю интервальные границы для каждой группы:

номер границы

группы нижняя верхняя

1 1.0 8.0

2 8.0 15.0

3 15.0 22.0

4 22.0 29.0

5 29.0 36.0

Составим рабочую таблицу, куда сведем первичный статистический материал:

Группы предпри-ятий по кол-ву вагонов нахощящ. на ремонте, шт/сут

Номер предприятия

Число вагонов, находящихся в ремонте, шт/сут

Чистая прибыль предприятия, млн.руб.

1

2

3

4

1.0 - 8.0

51

54

55

59

60

61

62

63

64

66

68

69

70

71

72

77

78

79

80

81

82

84

86

87

91

92

93

94

95

96

97

98

100

8

2

2

8

6

5

8

1

6

4

2

1

5

1

7

6

7

1

7

1

5

6

8

1

2

2

1

8

6

3

3

2

5

130

124

125

124

128

110

150

110

122

110

121

111

132

129

139

136

133

127

128

118

124

110

148

123

122

124

113

117

126

130

112

133

176

ИТОГО :

33

140

4165

8.0 - 15.0

52

57

58

67

73

76

83

88

90

11

14

14

9

9

10

15

10

11

148

126

136

139

148

134

137

138

139

ИТОГО :

9

103

1245

15.0 - 22.0

65

75

85

89

18

16

17

21

140

146

139

189

ИТОГО :

4

72

614

22.0 - 29.0

56

74

99

29

25

25

135

144

195

ИТОГО :

3

79

474

29.0 - 36.0

53

36

155

ИТОГО :

1

36

155

Разработаем аналитическую таблицу взаимосвязи между числом вагонов находящихся на ремонте и чистой прибылью :

Табл. 2

Группы предпр. по кол-ву вагонов поступающих в ремонт

Число предпри-ятий

Число вагонов находящихся в ремонте, шт/сут

Чистая прибыль, млн.руб

Всего по группе

в среднем на одно предприятие

Всего по группе

в среднем на одно предприятие

1.0 - 8.0

33

140

4,2

4165

126,2

8.0 - 15.0

9

103

11,4

1245

138,3

15.0 - 22.0

4

72

18,0

614

153,5

22.0 - 29.0

3

79

26,3

474

158,0

29.0 - 36.0

1

36

36,0

155

155,0

Исследовав показатели работы 50-ти предприятий железнодорожного транспорта, можно сказать, что чистая прибыль предприятия находится в прямой зависимости от числа вагонов находящихся в ремонте.

Задание 2.

Рассчитать коэффициенты вариации по группировочному признаку на основании исходных данных и по аналитической группировке согласно своего варианта из задания 1. Объяснить (если есть) расхождения в значениях полученных коэффициентов.

Решение:

Расчет коэффициента вариации проводится по следующей формуле:

где: G – среднее квадратическое отклонение;

x - средняя величина

1)

n – объем (или численность) совокупности,

х - варианта или значение признака (для интервального ряда принимается

среднее значение)

Рассчитаем показатели вариации для примера, рассмотренного в задании 1. Расчет проводится по группировочному признаку. Во-первых, рассчитаем все показатели по исх. данным (см. табл. 1):

2) Среднее кв. отклонение рассчитываем по формуле:

вернемся к форм. ( 1 )

3) Теперь рассчитаем коэффициент вариации по аналитической таблице (см. табл. 2)

Рассчитаем серединные значения интервалов:

4,5 11,5 18.5 25,5 32,5

1 8 15 22 29 36

,

где

f - частота, т.е. число, которое показывает, сколько встречается каждая

варианта:

ваг.

Расчет среднего квадратического отклонения по аналитической группировке:

Вывод:

в обоих случаях расчета, коэффициент вариации (V) значительно больше 30 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточно типична.

Задание 3.

Провести 20 % механическую выборку из генеральной совокупности, представленной в таблице (использовать все 100 предприятий), по показателю, который является результативным признаком в аналитической группировке задания 1 в соответствии с вариантом. С вероятностью 0,997 рассчитать границы изменения средней величины в генеральной совокупности. Рассчитать среднюю данного признака по генеральной совокупности (по табл.) и сравнить с результатом, полученным на основании расчета по выборочной совокупности. Начало отбора начинать с номера предприятия совпадающего с номером варианта (8).

1)

      Статистика

      Страхование финансовых инвестиций

      Финансовые инвестиции представляют собой покупку активов в виде ценных бумаг, как долевых, так и долговых, которые будут приносить инвестору не только прибыль, но и гарантировать ему определенный уровень безопасности вложения средств.