Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

ПОСТАНОВКА ЗАДАЧИ

.

Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом различного объема перерабатывающего сырья.

Консервный завод производит дополнительный набор рабочей силы осенью в период интенсивной переработки продукции (сырья). Потребность в рабочих определяется уровнем производства с.х. продукции (сырья) и состав­ляет , человек Расходы на зарплату одного человека , а расходы в сезон составляют , . Уволить невостребованный рабочих можно, вы­платив им 30% средств, положенных им по контракту.

A1=20 B1=40 q1=0,1

A2=21 B2=46 q2=0,25

A3=22 B3=50 q3=0,15

A4=23 B4=54 q4=0,25

A5=27 B5=56 q5=0,15

A6=28 B6=60 q6=0,1

d=36

a=0,7

Требуется:

1) придать описанной ситуации игровую схему, установить характер игры и выявить ее участников, указать возможные стратегии сторон;

2) вычислить элементы платежной матрицы;

3) для игры с полученной платежной матрицей найти решение в чистых стратегиях (если оно существует), вычислив нижнюю и верхнюю чистую цену игры, в случае отсутствия седлового эле­мента определяется интервал изменения цены игры;

4) дать обоснованные рекомендации по стратегии найма рабочей силы, чтобы минимизировать расходы при предложениях:

а) статистические данные прошлых лет показывают, что вероятности , уровней производства с.х. продукции известны;

б) достоверный прогноз об урожае отсутствует;

В пункте 4 необходимо найти оптимальные чистые стратегии, пользуясь в 4 а) критерием Байеса, в пункте 4 б) критериями Лапласа. Вальда, Сэвиджа, Гурвица.

5) для игры с данной платежной матрицей составить эквивалентную ей задачу линейного программирования и двойственную ей зада­чу, решить на ПЭВМ одну из задач и выполнить экономический анализ полученного оптимального плана (решения в смешанных стратегиях);

6) составить программу для нахождения оптимальной стратегии игры с произвольной платежной матрицей, используя один из критериев;

7) по составленной программе вычислить оптимальную стратегию для решаемой задачи.

2.Игровая схема задачи

Это статистическая игра. Один игрок-Директор завода (статистик), второй игрок-природа. Природа располагает стратегиями П

j

(j=1,6), какой будет урожай. Директор может использовать стратегии Аi

(i=1,6), сколько рабочих нанять.

3.Платежная матрица игры.

Платежная матрица игры имеет вид:

Природа

1

2

3

4

5

6

Директор

1

-720

-766

-820

-882

-1112

-1200

2

-730,8

-756

-806

-864

-1092

-1176

3

-741,6

-766,8

-792

-846

-1072

-1152

4

-752,4

-777,6

-802,8

-828

-1052

-1128

5

-795,6

-820,8

-846

-871,2

-972

-1032

6

-806,4

-831,6

-856,8

-882

-982,8

-1008

Перейти на страницу: 1 2 3 4 5 6

Статистика

Страхование финансовых инвестиций

Финансовые инвестиции представляют собой покупку активов в виде ценных бумаг, как долевых, так и долговых, которые будут приносить инвестору не только прибыль, но и гарантировать ему определенный уровень безопасности вложения средств.